Early Sport Specialization and Injury Prevention in Gymnastics

Emily Sweeney, MD Pediatric Sports Medicine Physician Assistant Professor, Department of Orthopedics, University of Colorado School of Medicine November 13, 2020

SPORTS MEDICINE CENTER Children's Hospital Colorado

Objectives

- Define early sports specialization
- Discuss risks and benefits of early sport specialization in • gymnastics
- Review strategies to prevent injuries in relation to sport ۲ specialization

What is Sport Specialization?

- Intensive, year-round training in a single sport at exclusion of other sports
 - Intensive?
 - Year round: typically >8 months
- Gymnasts found to specialize as early as age 5
- Recent study of former NCAA gymnasts: mean age of specialization was 8 (some specialized as early as 2!!!)

PREPARE PERFORM RECOVER REPEAT

PREPARE PERFORM RECOVER REPEAT What is EARLY Sport Specialization? (ESS)

- Intensive training/competition in organized sport ٠
- Participating > 8 months per year
- Focusing on a single sport to the exclusion of other sports and free play
- Before age \sim 12; before puberty

Sport Specialization

- 1. Have you quit sports to focus on 1 main sport?
- 2. Do you train >8 months per year in your main sport?
- 3. Do you consider your sport to be more important than other sports?

Is ESS Bad or Good

- We don't really know
- There is little evidence either for or against early specialization, especially in gymnastics

Other Sports

- Women's Tennis Association
 - Developed limits on number of games played and for hours of training for youth athletes —
 - Over 10 years, the risk of early dropout fell from 7% to 1% for young professional women's _ players
 - There were also less injuries.
- Swimming: Early specialization \rightarrow less time on national team
- Year-round involvement: overuse injuries 42% higher in HS athletes who participate year round vs those who take >3 months off
- NCAA athletes: 70% did not specialize until age 12 or older ٠
- 97% of pro-athletes feel multiple sports increased their success

Benefits of Sport Specialization

- Early talent identification
- Less fear
- Easier to spot younger gymnasts through new, difficult skills
- May peak earlier
- Deliberate practice" and the 10,000 hour rule
 - Small study in chess players and elite musicians
 - "Outliers" by Malcolm Gladwell

PREPARE PERFORM RECOVER REPEAT

Downsides to Early Sport Specialization

- Increases overuse injury risk
 - >16 hrs per week of intense training \rightarrow increased injuries
- Social isolation: less exposure to peers
 - Interferes with normal psychological and skill development
- Burnout: more likely to withdraw from sport early
 - What does this do to long-term health?
- No evidence that ESS leads to long term success
- Early to mid-adolescence: sport diversification more important
 - Improved skill development
 - Less burnout

Sport Specialization in Gymnastics

<u>J Athl Train</u>. 2019 Oct; 54(10): 1095–1104. doi: 10.4085/1062-6050-397-18 PMCID: PMC6805067 PMID: <u>31633414</u>

PREPARE PERFORM RECOVER REPEAT

Sport Specialization and Fitness and Functional Task Performance Among Youth Competitive Gymnasts

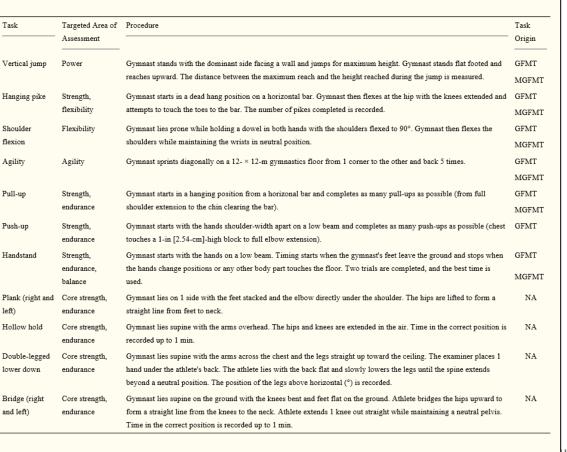
Hayley Root, PhD, MPH, ATC,^{*} Ashley N. Marshall, PhD, ATC,^{*} Anna Thatcher, PT, DPT, ATC,[†] Alison R. Snyder Valier, PhD, ATC, FNATA,^{*‡§} Tamara C Valovich McLeod, PhD, ATC, FNATA,^{®+‡} and <u>R. Curtis Bay</u>, PhD^I

• Are gymnasts who are more specialized better at functional movement skills?

Table 3

Responses to the Specialization Questionnaire Items by Level of Specialization, % (Frequency)

Item	Level of Specialization			
	Low (n = 19)	Moderate (n = 66)	High (n = 46)	
Trains more than 75% of time in primary sport	31.6 (6)	95.5 (63)	93.5 (43)	
Trains to improve skill and misses time with friends	26.3 (5)	50 (33)	50 (23)	
Quit another sport to focus on 1 sport ^a	0 (0)	1 (1.5)	100 (46)	
Considers primary sport more important than other sports ^a	0 (0)	98.5 (65)	100 (46)	
Regularly travels out of state for primary sport	5.3 (1)	51.5 (34)	45.7 (21)	
Trains >8 mo/y in primary sport ^a	63.2 (12)	100 (66)	100 (46)	


Open in a separate window

^aDenotes questions used to calculate specialization level.

SPORTS MEDICINE CENTER

Table 1

Preseason Assessment Fitness Components

Abbreviations: GFMT, Gymnastics Functional Measurement Tool; MGFMT, Men's Gymnastics Functional Measurement Tool; NA, not applicable.

Hospital Colorado

12

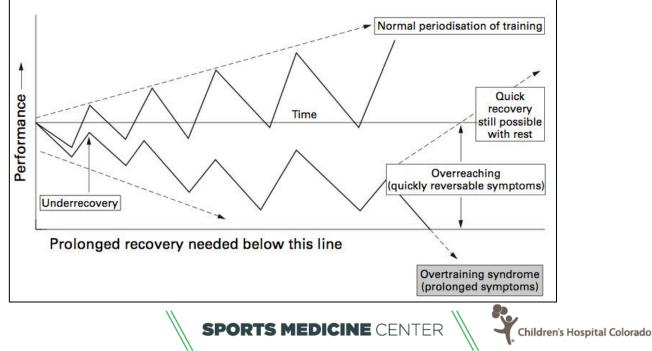
No differences by specialization level were noted for most of the gymnastics fitness tasks (P > .05)

Table 5

Scores on the Gymnastics Fitness Tasks Adjusted for Age, Hours of Training, and Years of Gymnastics Participation, Mean (95% Confidence Interval)

Task	Level of Specialization			P Value
	Low	Moderate	High	
Vertical jump, cm	35.0 (32.0, 38.0)	33.10 (31.56, 34.60)	33.33 (31.56, 35.11)	.551
Hanging pike, repetitions	6.95 (4.57, 9.32)	5.34 (4.12, 6.56)	6.24 (4.84, 7.64)	.440
Normalized shoulder flexibility, cm/arm length	0.51 (0.41, 0.61)	0.65 (0.60, 0.70)	0.66 (0.60, 0.71)	.035 ^a
Agility, s	22.32 (21.42, 23.22)	21.92 (21.46, 22.37)	21.88 (21.34, 22.42)	.700
Pull-ups, repetitions	4.28 (2.87, 5.70)	2.75 (2.03, 3.48)	3.53 (2.70, 4.37)	.138
Push-ups, repetitions	16.69 (10.75, 22.62)	14.87 (12.79, 16.94)	13.82 (10.95, 16.69)	.654
Handstand, s	10.85 (4.32, 17.37)	10.01 (6.70, 13.33)	10.07 (6.17, 13.98)	.976
Plank right, s	83.82 (69.49, 98.14)	71.14 (63.77, 78.51)	76.10 (67.51, 84.69)	.306
Plank left, s	72.11 (57.03, 87.19)	72.57 (64.79, 80.35)	79.53 (70.31, 88.76)	.479
Hollow hold, s	41.80 (33.47, 50.13)	31.45 (27.39, 35.50)	35.39 (30.65, 40.14)	.091
Double-legged lower-down test, °	28.21 (19.84, 36.58)	27.73 (23.59, 31.86)	24.42 (19.56, 29.27)	.542
Bridge right, s	34.78 (26.67, 42.88)	40.60 (36.59, 44.60)	42.26 (37.55, 46.96)	.296
Bridge left, s	34.20 (26.55, 41.86)	40.33 (36.55, 44.12)	42.90 (38.45, 47.34)	.155

^aP < .05.


Key Points

- More than 85% of gymnasts were either moderately or highly specialized
- Some gymnasts reported specializing as early as 5 years of age
- >50% of the gymnasts 11 years of age or older trained more hours/week than recommended by the American Academy of Pediatrics
- Most fitness tasks did not differ by specialization level when adjusted for age
- Specialization did not improve performance outcomes

Burnout

- A spectrum of conditions due to overtraining
- Athletes often burnout due to lack of fun vs too many external pressures on performance

Overuse Injuries

- About half of all athletic injuries (including in gymnastics)
 - Apophysitis: Sever's, Osgood-Schlatter's, Pelvis apophysitis
 - Tendonitis
 - Osteochondritis dissecans (OCDs)
 - Gymnast's Wrist
 - Spondylolysis
 - Stress fractures

Overuse Injuries

- Prior injury = strongest predictor of future overuse Injury
 - Do you screen your athletes? Do you require an annual physical?
- Overuse injuries more common during adolescent growth spurt
 - Body mass and height increase
 - · Imbalances in growth and strength
 - Joint hypermobility
 - Physis (growth plate) is less resistant to physical stress
 - Gymnast's wrist most common at growth spurt
- Address underlying causes of overuse injury

Reducing Risk of Overuse Injuries

- Make individualized modifications in training based on:
 - Sport (artistic, rhythmic, T&T, acro)
 - Age
 - Growth rate (sex)
 - Physical readiness
 - Mental readiness
 - Injury History

Children's Hospital Colorado

SPORTS MEDICINE CENTER

PREPARE PERFORM RECOVER REPEAT

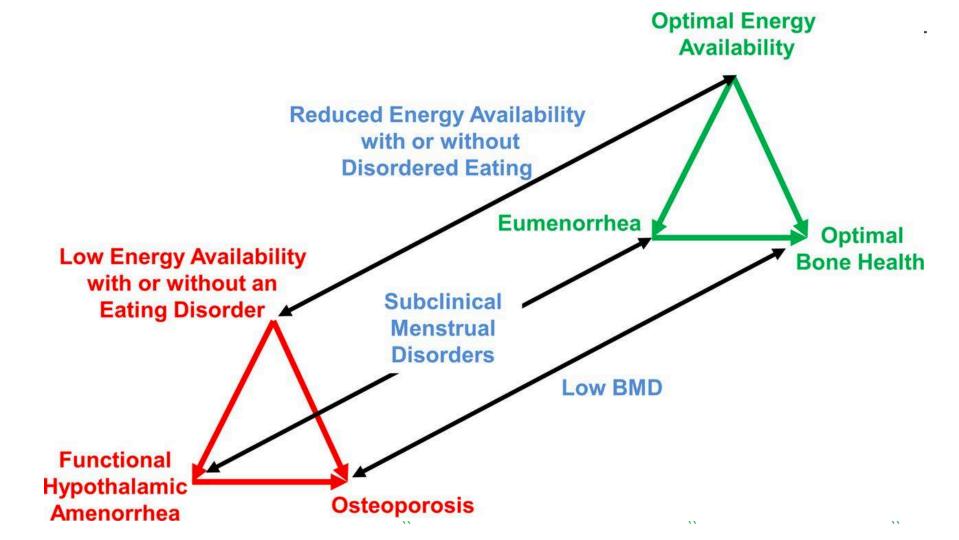
Reducing Risk of Overuse Injuries

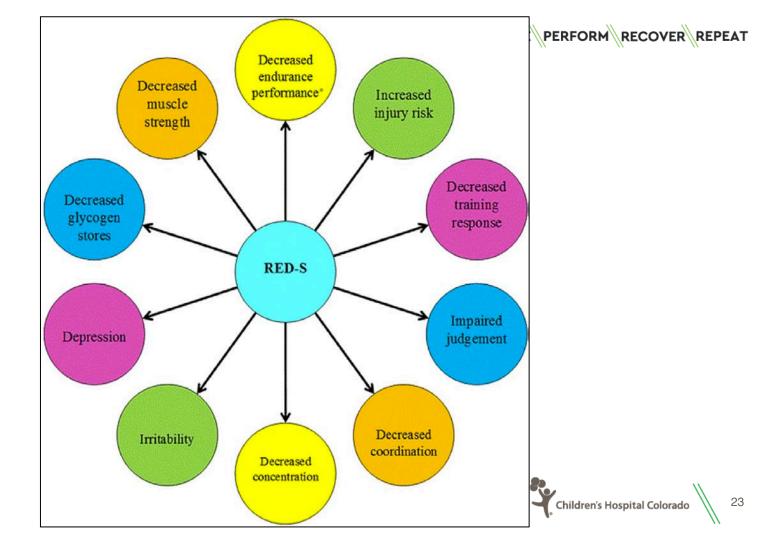
- Limit hours per week (hours/wk < age in years)
- Limit days per week (max 5-6)
- Limit months per year (can we take 1-2 months off?)
- Monitoring during adolescent growth spurt
 - Height, menstrual dysfunction, dietary habits
- Preseason conditioning program
- Neuromuscular training

PREPARE PERFORM RECOVER REPEAT

Modifiable Risk factors for Injury Prevention

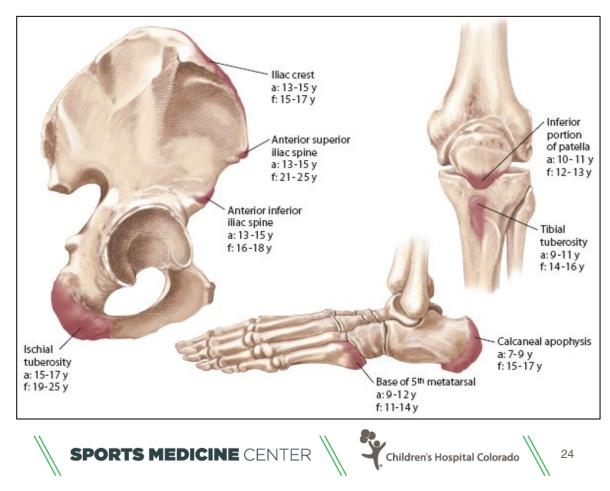
- Strength/Conditioning:
 - Improve endurance
 - Preseason preparation
 - Improve motor skills
- Training Load
 - Increased level and hours training/wk linked to wrist pain




Puberty

- Dr. Ellen Casey and Nick Ruddock discuss puberty in gymnasts:
- <u>https://shiftmovementscience.com/drellencasey/</u>

- Sexual and physical maturation
- Physical changes
 - Makes some skills temporarily more difficult
- Psychological/Social Development: Outside interests
- Female athlete triad and RED-S



Apophysitis

- Prevention
 - Stretching
 - Monitor growth
 - Brace/padding
- Pay attention to # of reps and hard landings, esp during growth spurts

Gymnast's Wrist

- Distal Radial Epiphysitis
- 11-14y/o
- Higher level gymnasts
- Tender over dorsal and radial wrist (thumb side)
- Pain with axial loading and forced extension of wrist (e.g. handstands, tumbling)
- Possibly swelling and decreased grip strength
- Prevention:
 - Tiger Paws or other wrist supports?
 - Limit high impacts esp when learning new skills

Webb (2008), Caine (2013)

SPORTS MEDICINE CENTER

Children's Hospital Colorado

Stress Fractures

- 20% of all injuries treated by sports med docs
- Foot, lower leg, hip, back
- Prevention
 - Very slow progression, especially after time off or injury
 - Ensure adequate nutrition
 - Monitor Female Athlete Triad and RED-S symptoms
 - Limit hard impacts during growth spurts
 - Ensure good form/technique

Future Directions

- We need to prospectively track young athletes to see what happens to them over time
 - When do they specialize and how much are they training?
 - How many impacts, spine extensions, etc?
 - When are they growing?
 - Do they get injured?
 - Do they burn out and guit?
 - Do they become very successful (e.g. college scholarship, become elite, etc)?

Recommendations

- Do not specialize until late adolescence
 - Diversity of sports/activities before age 12 (or later)
- No more hours per week than years in age?
 - < 16 hours per week?
 - Different limits for different levels?
- At least 1 day completely off of organized sports
- Don't ignore pain

Take Home Points

- Early sport specialization leads to increased overuse injuries without increasing long term success: specialize ~13
- Use your resources physicians, PTs, ATs, dietitians, psychologists, etc.
- Keep track:
 - # of progressions
 - Growth (height, seated height, wing span)
 - Weaknesses/inflexible areas
 - Injuries
- Treat Injury Prevention as an important part of practice (individualize) mobility/strength)
- Allow time for free play/unstructured practice
- Don't ignore pain
- Encourage multiple sports
- Take time off each week and each year

- Practice makes perfect
- Perfect practice makes perfect
- Perfect practice at the right time, in an intrinsically driven athlete, makes perfect (Popkin 2019)

References

- DiFiori JP, Benjamin HJ, Brenner J, et al. Overuse injuries and burnout in youth sports: a position statement from the American Medical Society for Sports Medicine. Clin J Sport Med. 2014;24(1):3-20.
- Brenner JS, Council On Sports M, Fitness. Sports Specialization and Intensive Training in Young Athletes. *Pediatrics*. 2016;138(3).
- Feeley BT, et al. When is it too early for single sport specialization? AJSM. 2015;44(1):234-241.
- Myer GD, et al. Sport Specialization, part 1: Does early sports specialization increase negative outcomes and reduce the opportunity for success in young athletes? Sports Health. 2015;7(5):437-442.
- Myer GD, et al. Sports specialization, part II: Alternative solutions to early sport specialization in youth athletes. Sports Health. 2015;8(1):65-73.
- Popkin CA, et al. Early Sport Specialization. J Am Acad Orthop Surg. 2019;27:e995-1000.

THANK YOU!

Emily.Sweeney@childrenscolorado.org

